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ON THE NUMERICAL CONDITION 
OF BERNSTEIN-BEZIER SUBDIVISION PROCESSES 

R. T. FAROUKI AND C. A. NEFF 

ABSTRACT. The linear map M that takes the Bernstein coefficients of a poly- 
nomial P(t) on a given interval [a, b] into those on any subinterval [a, b] is 
specified by a stochastic matrix which depends only on the degree n of P(t) 
and the size and location of [a, T] relative to [a, b]. We show that in the 
11 * 110j-norm, the condition number of M has the simple form K. (M) = 

[2f max(u7, VO)], where u5 = (m - a)/(b - a) and v, = (b - m)/(b - a) 

are the barycentric coordinates of the subinterval midpoint m = 2 (a + b) , and 
f denotes the "zoom" factor (b - a)/(b - a) of the subdivision map. This sug- 
gests a practical rule-of-thumb in assessing how far Bezier curves and surfaces 
may be subdivided without exceeding prescribed (worst-case) bounds on the 
typical errors in their control points. The exponential growth of Koo (M) with 
n also argues forcefully against the use of high-degree forms in computer-aided 
geometric design applications. 

1. INTRODUCTION 

Subdivision algorithms [ 1, 11 ] play a key role in a variety of geometric proce- 
dures dealing with parametric curves and surfaces: rendering, approximating, 
computing intersections, etc. Conceptually, the function of a subdivision algo- 
rithm is to compute explicit representations of successively smaller segments of 
a curve or surface until these subsegments are amenable to certain simplifying 
assumptions which will facilitate the geometric procedure at hand (the familiar 
"divide and conquer" strategy). 

The de Casteljau algorithm [3] is perhaps the simplest and most popular of 
all subdivision algorithms (cf. [4]). Consider the degree-n Bezier curve with 
control points {Pk }: 

( n (bt)n-k(t-a)k 
(1) ~~r(t) =ZEPk( ) (b at (a)n for t c[a, b]. 

k=O (-) 

To subdivide the curve (1) at some prescribed parameter value s E [a, b], we 
set PM = for k = 0, 1, ..., n, and then iterate the sequence of linear 
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interpolations [4]: 

(2) P(r) (b - )p ) + (sk r r + n, 
(2 

k (b -a)' 

for r = 1, 2, ... , n . The quantities {p5[)} generated by the algorithm (2) form 
a triangular array, and the elements 

(0) (1) (n) (n) (n-i) (0) 
(3) pO ,p1 P ...,pn and pn pn 1), 

... pn 5 

on the left- and right-hand sides of this array are the control points of r(t) 
on the parameter intervals [a, s] and [s, b] to the left and right of the split 
point s: 

(4a) r(t) = Zp(k) (n) (s 
- 

t)n- (t -a)k for t c[a, s] , 
(: Pk k (s - a)n 

n nk n/ (b tn-ktSk 
(4b) r(t) = : P(n-k) ( n (b t) -(ts) for t E [s, b]. 

k=0 J ( 
To subdivide further, we may choose parameter values on the intervals [a, s] 
and [s, b], and apply the de Casteljau algorithm again to the above forms. 

By such compounded application, the original parameter domain [a, b] of 
r(t) may be dissected into a sequence of contiguous subintervals [aI, b 1 , .... 

[aN 5bN] such that certain subdivision termination criteria are satisfied for each 
curve segment (these may be phrased in terms of the variation diminishing or 
convex hull properties of the Bezier form, or the convergence of the control 
polygon to the curve; cf. [4] for a review). 

In certain circumstances the required subdivision factors fi = (b - a)/ (bi - a1) 
can be very large, and if the de Casteljau algorithm (2) is invoked repeatedly 
in finite-precision arithmetic, the computed control points on the subintervals 
[ai, bi] may suffer significant error accumulations. These may then induce erro- 
neous decisions regarding the satisfaction of the subdivision termination criteria 
(such problems are likely to occur, for example, when subdivision methods are 
used to compute near-tangential intersections of plane curves). 

The stability and error-propagation analysis of subdivision techniques is thus 
of great practical importance. For the de Casteljau algorithm, it is not difficult 
[5] to write down the running error analysis formulae appropriate to (2) and, by 
simplification, these even furnish (rather weak) a priori error bounds. However, 
we shall not be concerned in this paper with specific subdivision algorithms such 
as (2), but rather with the fundamental problem of the intrinsic stability of the 
subdivision process, i.e., the sensitivity of the representation of a curve or surface 
subsegment to perturbations in the representation of the parent curve or surface 
from which it is derived. 

This intrinsic sensitivity is intimately (though rather subtly) related to the 
performance of actual subdivision algorithms by the method of backward error 
analysis [16]. Certainly, the accuracy of any subdivision algorithm will always 
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be severely degraded under circumstances in which the intrinsic sensitivity is 
very high. 

2. BERNSTEIN-BtZIER SUBDIVISION PROCESSES 

For Bernstein-Bezier forms, we derive below a simple characterization of 
this intrinsic stability in terms of a condition number for the subdivision pro- 
cess. The dependence of this condition number on the size and location of the 
subinterval relative to the parent interval and on the polynomial degree is quite 
transparent, allowing a simple practical interpretation. 

For conciseness we consider henceforth only the subdivision of scalar-valued, 
univariate polynomials in Bernstein-Bezier form; the extension of the ideas 
presented below to vector-valued univariate polynomials (parametric curves) 
or vector-valued tensor products of univariate polynomials (tensor-product 
parametric surfaces) is quite straightforward. Thus, we will speak simply of 
"Bernstein coefficients" rather than Bezier control points. 

Consider the degree-n Bernstein basis functions: 

(5a) bn(t)= (n) (b -t)- (t -a)k fork,= O, 1, ..., n, k k ~~(b -a)n 

(5b) bt)n 
() (b -t) i(t-a) for j =O , 1, ..., n, 

defined on two distinct proper intervals [a, b] and [a, b]. The Bernstein co- 
efficients of a polynomial P(t) of degree n in these bases will be denoted by 
{Ck } and {}j }, so that 

n n 

(6) P(t) = Zckbk(t) = Zcbj (t) 
k=O j=0 

Although the expressions (6) for P(t) are valid for all t, we shall be concerned 
primarily with the interval t e [a, b] for the first form, and t e [a, b] for the 
second. 

Remark 1. We recall two well-known properties of the Bernstein basis functions 
(5) which will be of subsequent use: (i) they form a partition of unity: 

n n 
(7) 1 = Zbk(t) = Zb.(t) for all t, 

k=O j=0 

and (ii) they are nonnegative over their respective intervals: 

(8a) b n(t) > O for t e [a, b], k =O 1, ..., n, 

(8b) bj(t) > 0 for t e [a, b], j =0, 1, ..., n. 

Together, these characteristics imply the well-known convex hull property of 
Bezier forms. 
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At present we are primarily interested in the transformation of the Bernstein 
coefficients of P(t) on [a, b] into those on [a, b]. In order to identify the 
square matrix M which defines this transformation, we rewrite the terms b - t 
and t-a in b n(t) as 

(9a) b-t= -(b-) 
(b - ai) 

(9b) t - a = (a a)(b - t) + (b - a)(t - a) 

Substituting these expressions into (5a) and performing binomial expansions 
then gives 

kk (T ( rs(-k 
(0 KnA~2 tr )s) (b-b)-(b a)s(b-a)-k-r(a k-s -n 

( ) n (b-a)n br+s(t) 

r + sJ 

for bk (t). Now it may be verified by direct expansion that 

(45) - ( -) 

so (10) can be rewritten in the form 

(12) 
n-k k(bbr ~ ~ 

snk-r k-s 
( ? r+3s (b _ b)?(b - a)( n-r-s (b- a) -k-r(a -a) b5( 

s J (b-a)r+s k-s (b-a)n-r-s r+s 

n-k k 

= b5 (T) bk (a) y s(t). = S ~S ks r 
r=O s=0 

Thus, on setting j = r + s and taking appropriate summation limits, we observe 
that 

n 

(13) bk(t) = Sb t)MJk, 
J=0 

where 
min(j, k) 

(14) bj (T = n- 
bi(bZ"ii) for j,5 k = O.5 1,.........., n. 

i=max(o j+k-n) 

By substituting (13) into (6) we see that the Bernstein coefficients {c;} on the 

interval [a, bi are related to those {Ck } on [a, b] by 
n 

(15) cj = E MjkCk for j = 0 1,. . .,. 
k=o 

We now highlight two important properties of the family of transformation 
matrices M whose elements are defined by (14). 
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Lemma 2. The matrix elements (14) sum to unity across each row of M: 
n 

(16) EMjk=1 for j=O,1,...,n. 
k=o 

Proof. The normalization (16) arises from the partition-of-unity property (7) 
of the basis functions on [a, b] and [a, b], since on summing over k in (13) 
we observe that 

n n n n 

(17) 1 Z b (t)Mjk = , m_ k by (t) 
k=O =o j=oj k=o 

From (7) and (17) we may then deduce condition (16) by virtue of the linear 
independence of the basis functions {b (t)}. 0 

Lemma 3. If [a, 1] c [a, b], the matrix elements (14) are all nonnegative: 
Mjk > O (and hence IMjk l = Mjk) for all O < j, k < n . 

Proof. Each of the n + 1 basis functions {bk (t)} is nonnegative over the entire 
interval t E [a, b]. Since [a, 1] c [a, b] implies that a E [a, b] and b E 

[a, b], each term of the sum (14) for MIk is clearly nonnegative, and thus the 
entire sum is nonnegative also, for all pairs of indices 0 < j, k < n. o 
Remark 4. When [, b1] c [a, b], the properties described in Lemmas 2 and 3 
indicate that M is a stochastic matrix. In this case, the coefficients {Z j} on the 
subinterval [a, 1] are convex combinations of those {ck} on the parent interval 
[a, b]. 

Stochastic matrices or "Markov chains" arise in discrete probability theory 
[7]. For a detailed discussion of their pervasive role in computer-aided geomet- 
ric design problems, the reader may refer to [8, 9]. 

Now let M 1 denote the inverse of the matrix M whose elements are defined 
by (14). We can write down the elements {MJk1 } of M-1 directly by simply 

interchanging the roles of the basis functions {b n(t)} and {bj (t)} on [a, b] 
and [a, b] in equations (9)-(14): 

min(j, k) 

(18) M)k = E b (b)bhk_(a) for j, k = O, 1, ...,n. 
i=max(O, j+k-n) 

The Bernstein coefficients of P(t) on [a, b] are thus given in terms of those 
on [a, b] by: 

n 

(l9) Cj =EM~~~~k Ik for j= 0, 1, ..,n. 
k=O 

The elements of M 1 also satisfy the unit row-sum property of Lemma 2, 
for the same reason, but when [a, b] c [a, b] they clearly cannot share the 
nonnegativity property of Lemma 3, since M 1M = I and the elements of M 
are all nonnegative. In this case, M'l is not a stochastic matrix, and in fact 
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we have: 

Lemma 5. If [a, b] c [a, b], the matrix elements (18) are of alternating sign: 

(20) IMjk I = (-1) Mkf for j, k = 0, 1, ...,n. 

Proof. Consider the term b J(b)bk-i(a) in the sum (18) for the matrix element 
MAl . When [ab] c [a, b], we observe that b - a >, b- a > 0 and 
b - b < 0, a - a < 0, so by the definition (5b) of the basis functions we have 

(21) Ib,(b)J = (-1)1 bi(b) and Ibk-i(a)I = (-1)k ib-i(a). 

Thus, we may infer that 

(22) b (b)bk-i(a)| = |b (b)||bki(a)J = (_1)J+kb(b)b- (a), 

for each term i = max(0, j+k- n), ... , min(j, k) of the sum (18). According 
to whether j + k is even or odd, these terms are evidently all nonnegative or 
nonpositive, and hence IMJ k= (J1.)+kMJl ? 

The transformation matrices M and M 1 whose elements are given by 
(14) and (18) are quite general, applying to arbitrary distinct intervals [a, b] 
and [d, b]. However, we shall henceforth be interested solely in cases where 
[a, b] c [a, b], so that Lemmas 3 and 5 hold, and we refer to the matrices M 
corresponding to such cases as subdivision matrices. 

3. THE CONDITION NUMBER Koo(M) 

Let c = (co0 ... , C ) Tand c = (Zo , ... , Cn )T denote column vectors repre- 
senting the Bernstein coefficients of a polynomial P(t) on the intervals [a, b] 
and [a, b] . We are interested in the sensitivity of -c to perturbations in c, i.e., 
in the condition of the linear map 

(23) -c= Mc. 

It is well known (cf. [17]) that in terms of the vector norm and subordinate 
matrix norm 

(24) [?c1I~ Il/p cn IIMcII 
(24) IIcIIP =[ Icilp, , IIMIIP = supl 

Li=O Jo0 ICI 

this sensitivity may be characterized by the relation 

(25) iP < KP(M),ep where Kp(M) = JIM- JJP IJMIIp, 

and the scalar fractional error measures 8P and -p for corresponding perturba- 
tions 3c = (3co,..., 3cn)T and R = (3o, . 5.. T in c and ic are defined 
by: 

(26) -P IlilP and = IkII&IIP 
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The quantity Kp (M) is the condition number of the subdivision matrix M, in 
the 11 - lip-norm. 

We shall be concerned here primarily with the 1 or maximum norm 
[15]: 

n 

(27) IlcII00 = max Icil, i IMI_ = max E IMjkl, O<i<n O<j<nk= 

since this is most amenable to the derivation of a simple closed-form expression 
for the condition number. We claim also that Ko (M) may be regarded as 
offering a representative value for the general Kp (M) condition number: 

Proposition 6. The p-norm condition number of an (n + 1) x (n + 1) matrix M 
is bounded in terms of the ox-norm value by 

(28) Kp(M) < (n + 1)2/ K. (M) for all M. 
Proof. By the Riesz convexity theorem [2, 14] we may bound the general matrix 
norm lIMlIP in terms of the "simple" norms 1IM11 and IIMIK. as follows: 

(29) lIMIlp < JIMII'/P~IMII(P l)/p for all M. 

Now since IIMIK. is the greatest sum of absolute values of the elements of M 
across rows (cf. (27)), and IMI IM is the greatest sum of absolute values across 
columns [ 1 5 ], we have 1 i M 111 < (n + 1) I i M I I . for all M . Together with equation 
(29), this implies that lIMIlp < (n + l)1PlIMII,. The bound (28) follows on 

applying this inequality to M and M 1 . o 

Since condition numbers are in general extremely large, and one is primarily 
interested in their orders of magnitude rather than their precise numerical val- 
ues, thie factor (n + 1 )2/p in the bound (28) is not of great significance, and we 
may regard K., (M) as being reasonably representative of the magnitude of the 
general Kp (M) condition number. 

We are now ready to prove our main result: 

Theorem 7. For [a, b] c [a, b] let 7m = 2 (a + b) denote the midpoint of the 
subinterval [a, b], let u, = (m - a)/(b - a) and v, = (b - m)/(b - a) be 
the barycentric coordinates of that midpoint relative to [a, b], and let f = 
(b-a)I/(b-a) be the "zoom"factor of the subdivision map. Then for polynomials 
of degree n, the 11 K II.-norm condition number of the corresponding subdivision 
matrix M is given by 

(30) K. (M) = [2fmax(u-, v)]n. 
Proof. As an immediate consequence of Lemmas 2 and 3, we observe that when 
[a, b] c [a, b], the corresponding subdivision matrix M satisfies IIMIK. = 1, 
and its condition number is thus given by Koo(M) = I1M 1 II K. To evaluate the 
latter, we note on substituting for bJ (b) and b-_n. (a) in (18) and making use 
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of Lemma 5, that 

(31) 

IM-11| = (_I)i M-1 
= minj, k) (9 (nil)i k- 
= sE ( j 8 r n -j (b - )i-'~ (b ban--ia_ a)- 

i=max(O j+k-n) 

j+k j- k- k-i where we have set (-1 )j' (b - b) -'(a -a) = (b - b)'-'(d - a) The sum 
of the quantities (31) across row j of M1 is thus given by 

(32) 
n 

j 
k 

i n - j mn(b - )j- (b - a)k---k+i( 
i 

_ a)k- 

k=O i=max(O j+k-n) 

Now for a fixed row index j and all column indices 0 < k < n, let Uik be 
the summand of the double sum (32) if 0 < i < j, and let Uik =0 if i <O or 
i > j. Then we may simplify the summation limits on the inner sum of (32) 
by writing it in the form: 

n n k 

(33) ZIMjkI Z S ik 
k=O k=O i=j+k-n 

since this entails only adding spurious zeros in certain cases. Now (33) is more 
amenable to rearranging the order of summation: 

n n min(n, n-j+i) j n-j+i 

(34) EIMjkI = >1 E >1 ikE 5 
k=O i=j-n k=max(O, i) i=O k=i 

the last step following from the fact that Uik = 0 for all 0 < k < n whenever 
i < O or i > j. 

Since the final form in (34) has no zero contributions Uik with i < 0 or 
i > j, we may now substitute the original summand of (32) in place of cik. 
Hence we have 

(35) 
n 

EIMjk)I 
k=O 

j f+i-] j (n-jN (b b)ii(b)i(ba)-k+i(a k-i 

i n-j b-T)J-(b-Zi)(b a P a 
i=O k=i 

= _ 1 < r J 8 (h-h~i-i~h _,,)iE n-j - n-j- _ 
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for any row index j. Now if mh = 2 ( + b) denotes the midpoint of [a, b], the 
sums in (35) are evidently just the binomial expansions of [(b - b) + (b - a)]j = 
[2(b - Ji)]j and [(b - a) + (a - a)]" j = [2(1f - a)]n j, so we arrive at the 
simple expression 

(36) Z IM.' = 2 (b - m)(ma) 2nfn [b - ]i [i ] -a 

k=O ( ~ ba ba 

for the sum across row j, where f = (b - a)/(b - 

Finally, if m = I (a + b) denotes the midpoint of the parent interval [a, b], 
the index j which maximizes the quantity (b - mi)j (mi - a)ni in (36) over all 
rows is either j = 0 or j = n , according to whether m > m or m < m. Hence, 
on setting um = (mi - a) / (b - a) and vm = (b - m)/(b - a), the K-norm 

of M 1 is given by 

(37) IIM' IIOO = [2f max(uf, v7)], 

and since K.,(M) = 11M' K we have the desired result (30). a 

4. PRACTICAL REMARKS 

In previous studies [5, 6] we have demonstrated the superior intrinsic stability 
of the Bernstein-Bezier representation for parametric polynomial curves and 
surfaces, as compared to the familiar power form, and discussed the feasibility 
of systematic computation with Bernstein-Bezier forms. This paper offers a 
concise characterization of the intrinsic stability of a fundamental computation 
which enjoys widespread application in Bezier curve and surface algorithms, 
namely, the subdivision process. 

Notwithstanding its simple elegance, our motivation in deriving Theorem 7 
was not purely theoretical. We therefore offer an interpretation which has im- 
mediate implications for the floating-point implementation of curve and surface 
algorithms: 

Rule-of-thumb. Let r(t) be a generic Bezier curve of degree n with control 
points {Pk} on the parameter interval t E [a, b]. If the {Pk} are specified in 
floating-point format with a mantissa of a finite number of digits in base ,6, 
the greatest allowable "zoom" factor f = (b - a)/(b - a) in the subdivision of 
r(t) to a parameter interval [a, b] c [a, b], such that no more than r digits 
of precision are lost, is roughly 

(38) fmax- 2max(u-, v)' 

where um and vm are the barycentric coordinates of m = 2 (a + b) relative to 
[a, b]. 

As a simple example, consider the subdivision of cubic (n = 3) Bezier curves 
with control points represented in decimal (,B = 10) floating point. If it is 
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desired that no more than r = 6 decimal places of accuracy be lost in the 
subdivision process, equation (38) suggests a maximum zoom factor of between 
about 50 and 100, depending on the subinterval location. 

Of course, in specific cases the actual error amplification will often be sub- 
stantially less than indicated by K. (M), and subdivision could proceed to finer 
resolutions than suggested by this rule-of-thumb. The actual error can be es- 
timated in particular cases by, for example, a running error analysis such as 
described in [5]. However, the bound (38) is nevertheless valuable as a conser- 
vative a priori indicator of safe subdivision levels for arbitrary Bezier curves 
and surfaces of a given degree. 

Another important practical message arises from the exponential growth of 
Ko,(M) with the polynomial degree n. High-degree (n > 10) curves are gain- 
ing increasing popularity in certain design applications for the additional "flex- 
ibility" they offer. However, our analysis indicates a potentially severe loss of 
accuracy in elementary computations with such forms. The desired freedom of 
shape would be better attained by recourse to low-degree piecewise polynomial 
(i.e., spline) forms. 

To conclude, we recall the discussion of ?1 concerning subdivision termina- 
tion criteria. In the context of isolating the real roots of a polynomial P(t) 
on a given interval [a, b], the appropriate criterion [12] is that the Bernstein 
coefficients Zo, ... , n on each subinterval [a, b] exhibit precisely zero or one 
sign change, since the variation diminishing property [13] then ensures exactly 
zero or one root on each of those subintervals. (More stringent conditions, 
guaranteeing the convergence of Newton's iteration [10] from any initial value 
to E [a, b], are desirable if roots are to be approximated-these may be phrased 
in terms of sign changes in the first- and second-order differences of eo, ... ., in .) 

Unfortunately, the simple characterization of numerical stability given by 
(30) does not offer sufficiently detailed information on the errors wCo, ..., den 
in the computed coefficients G, ..., n to ascertain whether they might er- 
roneously indicate satisfaction of the root-isolation criterion. The quantity 
8P = lI3cIp/lIlcjp measures an average fractional error in the coefficients, whereas 
the individual fractional errors 5vj/cT determine whether or not the number of 
sign changes is correct. (In particular, note that ,00 = max(I35i1I)/ max(jI 1I), 
where in general the error of greatest magnitude does not occur in the coeffi- 
cient of greatest magnitude.) Thus, a robust test of the termination criterion 
demands a more detailed error analysis than given here; we hope to pursue this 
matter in a subsequent study. 
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